Abstract
In mammals, glucocorticoid (i.e. GC) levels have been associated with specific life-history stages and transitions, reproductive strategies, and a plethora of behaviors. Assessment of adrenocortical activity via measurement of glucocorticoid metabolites in feces (FGCM) has greatly facilitated data collection from wild animals, due to its non-invasive nature, and thus has become an established tool in behavioral ecology and conservation biology. The aim of our study was to validate a fecal glucocorticoid assay for assessing adrenocortical activity in meerkats (Suricata suricatta), by comparing the suitability of three GC enzyme immunoassays (corticosterone, 11β-hydroxyetiocholanolone and 11oxo-etiocholanolone) in detecting FGCM increases in adult males and females following a pharmacological challenge with adrenocorticotropic hormone (ACTH) and biological stimuli. In addition, we investigated the time course characterizing FGCM excretion, the effect of age, sex and time of day on FGCM levels and assessed the potential effects of soil contamination (sand) on FGCM patterns. Our results show that the group specific 11β-hydroxyetiocholanolone assay was most sensitive to FGCM alterations, detecting significant and most distinctive elevations in FGCM levels around 25 h after ACTH administration. We found no age and sex differences in basal FGCM or on peak response levels to ACTH, but a marked diurnal pattern, with FGCM levels being substantially higher in the morning than later during the day. Soil contamination did not significantly affect FGCM patterns. Our results emphasize the importance of conducting assay validations to characterize species-specific endocrine excretion patterns, a crucial step to all animal endocrinology studies using a non-invasive approach.
Highlights
In their daily lives, animals often experience aversive stimuli, which trigger a physiological stress response
We aimed to 1) determine stress-related physiological responses in meerkat feces by performing an adrenocorticotropic hormone (ACTH) stimulation test, 2) evaluate the suitability of the previously used corticosterone assay [52] by comparing its performance with that of two group-specific assays that measure metabolites of cortisol, 3) characterize the metabolites measured by the different assays using HPLC analysis, 4) determine the time course of FGCM excretion, 5) test the validity of the most reliable assay to detect FGCM increases following social stimuli, and 6) evaluate the potential impact of soil contamination of the feces upon FGCM excretion patterns
Basal FGCM levels measured by the 11β-hydroxyetiocholanolone EIA were substantially (2–4 fold) higher compared to levels measured by the CCST assay (Table 2)
Summary
Animals often experience aversive stimuli (e.g. aggression with conspecifics, predator encounters, food restrictions, injuries, disease), which trigger a physiological stress response. When production is induced for prolonged periods of time (i.e. chronically), GCs may negatively affect some physiological functions [8, 9] related to reproduction [10, 11], cognition [4, 12] and immune defense [5], which can result in reduced survival probability [13]. A growing body of data has emphasized how GCs can be involved in the modulation of a wide variety of behaviors including antipredator [22, 23], competitive [24], cooperative ([25] but see [26, 27]), and affiliative behaviors [26], and can potentially have important effects on the display and maintenance of social relationships in animal societies
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have