Abstract

Simple SummaryThis paper aims to validate a recently released commercial sensor (AFICollar®, Afimilk, Israel) to monitor dairy cows’ feeding and ruminating behavior. In order to evaluate the sensor’s performance under different feeding scenarios, the cows involved were divided into groups and fed different types of feed, including grazed pasture. Further, two version of the software used to convert raw data into behavioral information were tested and compared. Sensor data have been validated against visual observations, which served as the gold standard. Various statistical methods have been employed to assess sensor precision and accuracy. The results indicate that the sensor is adequately accurate for both feeding and ruminating time. However, the precision of the system appeared somewhat limited and should be improved.The use of sensor technologies to monitor cows’ behavior is becoming commonplace in the context of dairy production. This study aimed at validating a commercial collar-based sensor system, the AFICollar® (Afimilk, Kibbutz Afikim, Israel), designed to monitor dairy cattle feeding and ruminating behavior. Additionally, the performances of two versions of the software for behavior classification, the current software AFIfarm® 5.4 and the updated version AFIfarm® 5.5, were compared. The study involved twenty Holstein-Friesian cows fitted with the collars. To evaluate the sensor performance under different feeding scenarios, the animals were divided into four groups and fed three different types of feed (total mixed ration, long hay, animals allowed to graze). Recordings of hourly rumination and feeding time produced by the sensor were compared with visual observation by scan sampling at 1 minute intervals using Spearman correlation, concordance correlation coefficient (CCC), Bland–Altman plots and linear mixed models for assessing the precision and accuracy of the system. The analyses confirmed that the updated software version V5.5 produced better detection performance than the current V5.4. The updated software version produced high correlations between visual observations and data recorded by the sensor for both feeding (r = 0.85, CCC = 0.86) and rumination (r = 0.83, CCC = 0.86). However, the limits of agreement for both behaviors remained quite wide (feeding: −19.60 min/h, 17.46 min/h; rumination: −15.80 min/h, 15.00 min/h). Type of feed did not produce significant effects on the agreement between visual observations and sensor recordings. Overall, the results indicate that the system can provide farmers with adequately accurate data on feeding and rumination time, and can be used to support herd management decisions. Despite all this, the precision of the system remained relatively limited, and should be improved with further developments in the classification algorithm.

Highlights

  • Precision livestock farming (PLF) developed as a tool serving both farmers and researchers that has the potential to improve animal health and welfare, increase the environmental sustainability of animal farming, increase production efficiency and reduce costs [1,2]

  • The behavioral data generated by the sensor system showed a high correlation with visual observations

  • The largest differences in ρ and correlation coefficient (CCC) between the two software versions were found for ruminating time, which, when using V5.5, showed correlation statistics comparable to those found for feeding time

Read more

Summary

Introduction

Precision livestock farming (PLF) developed as a tool serving both farmers and researchers that has the potential to improve animal health and welfare, increase the environmental sustainability of animal farming, increase production efficiency and reduce costs [1,2]. Monitoring tools need to be both easy to use for farmers and sufficiently precise for herd management [3]. A central problem is the process of the creation and acquisition of information, which allows us to convert data into informed management decisions [4]. This implies that the accuracy of data generation and manipulation must be investigated whenever new tools are implemented. This stage is necessary to evaluate the possible benefits and drawbacks deriving from the application of specific PLF tools

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call