Abstract

A corneal aberrometer based on Shack-Hartmann wave-front sensing was developed and validated by using calibrated aspheric surfaces. The aberrometer was found to accurately measure corneal reflective aberrations, from which corneal topography and corneal refractive aberrations were derived. Measurements of reflective aberrations correlated well with theory (R2 = 0.964 to 0.994). The sag error root mean square (RMS) was small, ranging from 0.1 to 0.17 microm for four of the five calibrated surfaces with the fifth at 0.36 microm as a result of residual defocus. Measured refractive aberrations matched with theory and whole-eye aberrometry to within a small fraction of a wavelength. Measurements on three human corneas revealed very large refractive astigmatism (0.65-1.2 microm) and appreciable levels of trefoil (0.08-0.47 microm), coma (0.14-0.19 microm), and spherical aberration (0.18-0.25 microm). The mean values of these aberrations were significantly larger than the RMS in repeated measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.