Abstract

BackgroundThe clinical course of Idiopathic Pulmonary Fibrosis (IPF) is unpredictable. Clinical prediction tools are not accurate enough to predict disease outcomes.MethodsAll-comers with Idiopathic Pulmonary Fibrosis diagnosis were enrolled in a six-cohort study. Peripheral blood mononuclear cells or whole blood was collected at baseline from 425 participants and during follow up from 98 patients. The 52-gene signature was measured by the nCounter® analysis system in four cohorts and extracted from microarray data in two others. The Scoring Algorithm for Molecular Subphenotypes (SAMS) was used to classify patients into low or high risk groups based on a 52-gene signature. Mortality and transplant-free survival were studied using Competing risk and Cox proportional-hazard models, respectively. Time course data and response to anti-fibrotic drugs were analyzed using linear mixed-effect models.FindingsThe application of SAMS to the 52-gene signature identified two groups of IPF patients (low and high risk) with significant differences in mortality or transplant-free survival in each of the six cohorts (HR 2·03–4·37). Pooled data revealed similar results for mortality (HR:2·18, 95%CI:1·53–3·09, P<0·0001) or transplant-free survival (HR:2·04, 95%CI: 1·52–2·74, P<0·0001). Adding 52-gene risk profiles to the Gender, Age and Physiology (GAP) index significantly improved its mortality predictive accuracy. Temporal changes in SAMS scores were associated with changes in forced vital capacity (FVC) in two cohorts. Untreated patients did not shift their risk profile over time. A simultaneous increase in up score and decrease in down score was predictive of transplant-free survival (HR:3·18· 95%CI 1·16, 8·76, P=0·025) in the Pittsburgh cohort. A simultaneous decrease in up score and increase in down score after initiation of anti-fibrotic drugs was associated with a significant (P=0·005) improvement in FVC in the Yale cohort.InterpretationThe peripheral blood 52-gene expression signature is predictive of outcome in patients with IPF. The potential value of the 52-gene signature in predicting response to therapy should be determined in prospective studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call