Abstract

High spatial–temporal resolution surface net radiation (RN) data are of great significance to the study of climate, ecology, hydrology and cryosphere changes on the Tibetan Plateau (TP), but the verification of the surface net radiation products on the plateau is not sufficient. In this study, the China Meteorological Administration Global Land Surface Reanalysis Products (CRA/Land) and ECMWF Land Surface Reanalysis version 5 (ERA5-Land) RN data were validated using ground measurements at daily and monthly time scales, and the spatiotemporal patterns were also analyzed. The results indicate the following: (1) CRA/Land overestimated while ERA5-Land underestimated RN, but CRA/Land RN outperformed ERA5-Land in observations at the daily and monthly scale. (2) The CRA/Land RN data had a larger error in the central part and a smaller error in the northeast of the TP, while ERA5-Land showed the opposite. (3) The spatial patterns of RN revealed by CRA/Land and ERA5-Land data showed differences in most regions. The CRA/Land data showed that the RN of the TP had a downward trend during 2000 and 2020 with a slope of −0.112 W·m−2/a, while the ERA5-Land data indicated an upward trend with a change rate of 0.016 W·m−2/a. (4) Downwelling shortwave radiation (DSR), upwelling shortwave radiation (USR), downwelling longwave radiation (DLR) and upwelling longwave radiation (ULR) are the four components of RN, and the evaluation results indicate that the DSR, DLR and ULR recorded via CRA/Land and ERA5-Land are consistent with the observed data, but the consistency between the USR recorded via CRA/Land and ERA5-Land and the observed data is poor. (5) The inconsistency of the USR data is the main reason for the large differences in the spatiotemporal distribution of CRA/Land and ERA5-Land RN data across the TP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call