Abstract

In the present study, numerical simulations using different Reynolds-Averaged Navier–Stokes (RANS) turbulence models are carried out to investigate the turbulent flow through the orifice plate at Reynolds number (Re) of 23000. The orifice thickness to pipe diameter ratio (t) and the orifice diameter to pipe diameter ratio (β) are fixed and equal to 0.1 and 0.5, respectively. The objective is to evaluate the behaviour of various RANS models with respect to the relevant flow parameters such as the pressure drop, velocity distributions and turbulence intensity profiles in the pipe by comparing the results with available published experimental data. The following turbulence models are studied: the k – ε, the k – ε Low Re, the k – ε RNG, the k – ε Realizable, the k – ω SST, the γ – SST, the EARSM and the k – ε Cubic models. It is found that based on the validation study of the flow through the orifice plate, the following models are in good agreement with experimental measurements: the k – ω SST, the γ – SST and the EARSM. They show a better performance than the k – ε model family in predicting the flow features which are important for the orifice flowmeter design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.