Abstract

3-Phosphoglycerate dehydrogenase (PHGDH) has recently been identified as an attractive target in cancer therapy as it links upregulated glycolytic flux to increased biomass production in cancer cells. PHGDH catalyses the first step in the serine synthesis pathway and thus diverts glycolytic flux into serine synthesis. We have used siRNA-mediated suppression of PHGDH expression to show that PHGDH is a potential therapeutic target in PHGDH-amplified breast cancer. Knockdown caused reduced proliferation in the PHGDH-amplified cell line MDA-MB-468, whereas breast cancer cells with low PHGDH expression or with elevated PHGDH expression in the absence of genomic amplification were not affected. As a first step towards design of a chemical probe for PHGDH, we report a fragment-based drug discovery approach for the identification of PHGDH inhibitors. We designed a truncated PHGDH construct that gave crystals which diffracted to high resolution, and could be used for fragment soaking. 15 fragments stabilising PHGDH were identified using a thermal shift assay and validated by X-ray crystallography and ITC competition experiments to exhibit 1.5-26.2 mM affinity for PHGDH. A structure-guided fragment growing approach was applied to the PHGDH binders from the initial screen, yielding greater understanding of the binding site and suggesting routes to achieve higher affinity NAD-competitive inhibitors.

Highlights

  • Deregulated metabolism in cancer provides a variety of potential targets for drug discovery that have yet to be explored

  • In an effort to further build on the reported target validation and to provide a chemical probe to interrogate the role of Phosphoglycerate dehydrogenase (PHGDH) activity in cancer, we explored the effects of PHGDH knockdown in a panel of cancer cell lines, and developed assays and a crystal system for the identification of fragments that bind to the cofactor binding-site of PHGDH

  • Of the cell lines investigated, those derived from breast cancer and melanoma demonstrated the highest levels of PHGDH expression (Figure 1)

Read more

Summary

Introduction

Deregulated metabolism in cancer provides a variety of potential targets for drug discovery that have yet to be explored. Many tumour types have been shown to preferentially metabolise glucose to lactate, irrespective of oxygen levels, a phenomenon termed the Warburg effect. This aerobic glycolysis process is less efficient in the production of ATP than is oxidative phosphorylation, but provides cancer cells with the means of balancing energy and biomass production [1]. More recent findings have extended these observations to reveal that PHGDH, the gene encoding PHGDH, is frequently amplified in melanoma and certain forms of breast cancer [4, 5]. Consistent with the genetic data, knockdown of PHGDH in melanoma and breast cancer cell lines containing a PHGDH amplification, resulted in decreased cell viability [4, 5].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call