Abstract
We have calculated the hole densities of states and the velocities as functions of energy in strained and relaxed p-type Ge/sub x/Si/sub 1/spl minus/x/ layers grown on /spl lang/001/spl rang/ Si substrates. It is shown that the nonparabolic and nonspherical effects are very large in the energy range of (0, 0.2 eV) measured from the heavy hole band edge. Deeper into the valence band, the bands gradually become parabolic and spherical. For most applications, the impurity doping concentration is below 10/sup 20/ cm/sup /spl minus/3/. For 10/sup 20/ cm/sup /spl minus/3/ p-type doped Si, the Fermi level is 77.3 meV at 77 K. It is therefore concluded that the nonparabolic and nonspherical effects must be taken into proper consideration when investigating the transport properties of p-type Ge/sub x/Si/sub 1/spl minus/x/ samples. The calculated data of both relaxed and strained Ge/sub x/Si/sub 1/spl minus/x/ valence band structures are curve fitted and a data library is built up for further study of the hole transport properties. The mobility and the diffusion coefficient are largely affected when the doping concentration is increased. It is found that at high doping concentration the contributions from the light hole and spin split-off bands become very important, they can become even larger than the contribution from the heavy hole band, even if their densities of states are smaller than that of the heavy hole band. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.