Abstract

BackgroundThere has been a considerable advancement in AI technologies like LLM and machine learning to support biomedical knowledge discovery.Main bodyWe propose a novel biomedical neural search service called ‘VAIV Bio-Discovery’, which supports enhanced knowledge discovery and document search on unstructured text such as PubMed. It mainly handles with information related to chemical compound/drugs, gene/proteins, diseases, and their interactions (chemical compounds/drugs-proteins/gene including drugs-targets, drug-drug, and drug-disease). To provide comprehensive knowledge, the system offers four search options: basic search, entity and interaction search, and natural language search. We employ T5slim_dec, which adapts the autoregressive generation task of the T5 (text-to-text transfer transformer) to the interaction extraction task by removing the self-attention layer in the decoder block. It also assists in interpreting research findings by summarizing the retrieved search results for a given natural language query with Retrieval Augmented Generation (RAG). The search engine is built with a hybrid method that combines neural search with the probabilistic search, BM25.ConclusionAs a result, our system can better understand the context, semantics and relationships between terms within the document, enhancing search accuracy. This research contributes to the rapidly evolving biomedical field by introducing a new service to access and discover relevant knowledge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.