Abstract

What is the central question of this study? Previous studies have shown that hypersympathetic nerve activity results in ventricular electrophysiological changes and facilitates the occurrence of ventricular arrhythmias. Vagus nerve stimulation has shown therapeutic potential for myocardial infarction-induced ventricular arrhythmias. However, the actions of vagus nerve stimulation on hypersympathetic nerve activity-induced ventricular electrophysiological changes are still unknown. What is the main finding and its importance? We show that vagus nerve stimulation is able to reverse hypersympathetic nerve activity-induced ventricular electrophysiological changes and suppress the occurrence of ventricular fibrillation. These findings further suggest that vagus nerve stimulation may be an effective treatment option for ventricular arrhythmias, especially in patients with myocardial infarction or heart failure. Vagus nerve stimulation (VNS) has shown therapeutic potential for myocardial infarction-induced ventricular arrhythmias. This study aimed to investigate the effects of VNS on ventricular electrophysiological changes induced by hypersympathetic nerve activity. Seventeen open-chest dogs were subjected to left stellate ganglion stimulation (LSGS) for 4h to simulate hypersympathetic tone. All animals were randomly assigned to the VNS group (n=9) or the control group (n=8). In the VNS group, VNS was performed at the voltage causing a 10% decrease in heart rate for hours3-4 during 4h of LSGS. During the first 2h of LSGS, the ventricular effective refractory period (ERP) and action potential duration (APD) were both progressively and significantly decreased; the spatial dispersion of ERP, maximal slope of the restitution curve and pacing cycle length of APD alternans were all increased. With LSGS+VNS during the next 2h, there was a significant return of all the altered electrophysiological parameters towards baseline levels. In the eight control dogs that received 4h of LSGS without VNS, all the parameters changed progressively, but without any reversals. The ventricular fibrillation threshold was higher in the VNS group than in the control group (17.3±3.4 versus 11.3±3.8V, P<0.05). The present study demonstrated that VNS was able to reverse LSGS-induced ventricular electrophysiological changes and suppress the occurrence of ventricular fibrillation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.