Abstract

ObjectiveRenal ischemia reperfusion (I/R) is not an isolated event; however, it results in remote organ dysfunction. Vagus nerve stimulation (VNS) has shown protective effects against renal I/R injury via an anti-inflammatory mechanism. This study aimed to investigate whether VNS could attenuate liver injury induced by renal I/R and identify the underlying mechanisms. MethodsEighteen healthy male Sprague-Dawley rats (200–250 g) were equally divided into three groups: sham group (sham surgery without I/R or VNS), I/R group (renal I/R) and VNS group (renal I/R plus VNS). The I/R model was established by excising the right kidney and then clamping the left renal pedicle with an occlusive nontraumatic microaneurysm clamp for 45 min followed by a 6-h reperfusion. The rats in the VNS group received spontaneous left cervical VNS with renal ischemia and reperfusion. At the end of the experiment, blood and liver tissues were collected to detect liver function, oxidative stress and inflammatory parameters. Additionally, TUNEL staining, real-time PCR, western blotting and hematoxylin and eosin staining of liver tissues were performed to assess liver injury and the underlying mechanisms. ResultsKidney and liver function was severely damaged in the I/R group compared to the sham group. However, VNS significantly protected kidney and liver function. Rats treated with VNS revealed decreases in oxidative enzymes, apoptosis and levels of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in serum and liver compared with rats in the I/R group. Rats in the VNS group also showed increased antioxidant stress responses compared to rats in the I/R group. ConclusionVNS exerts protective effects against liver injury from renal I/R via inhibiting oxidative stress and apoptosis, downregulating inflammatory cytokines and enhancing antioxidative capability in the liver, and may become a promising adjuvant therapeutic strategy for treating liver injury induced by acute renal injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.