Abstract

There is an urgent need for improved outcomes in the treatment of pelvic organ prolapse (POP). Success of primary surgery relies on the load bearing capacity of plicated connective tissue underneath the vaginal wall, which is compromised due to an altered vaginal fibroblast function and collagen composition. There is an important factor in connective tissue repair that relates to changes in stiffness of the vaginal fibroblast microenvironment, which influences cell activity through cellular mechanosensing. The aim of this study is to investigate the effect of stiffness changes on vaginal fibroblast functions that relate to connective tissue healing in prolapse repair. The substrate stiffness was controlled by changing the polymer concentration in the fibrous and strongly biomimetic polyisocyanide (PIC) hydrogel. We analyzed stiffness during cell culture and assessed the consequential fibroblast proliferation, morphology, collagen deposition, and contraction. Our results show that increasing stiffness coincides with vaginal fibroblast alignment, promotes collagen deposition, and inhibits PIC gel contraction. These findings suggest that the matrix stiffness directly influences vaginal fibroblast functionality. Moreover, we observed a buildup in stiffness and collagen, with an enhanced fibroblast and collagen organization on the PIC-substrate, which indicate an enhanced structural integrity of the hydrogel-cell construct. An improved tissue structure during healing is relevant in the functional repair of POP. Therefore, this study encourages future research in the use of PIC gels as a supplement in prolapse surgery, whereby the hydrogel stiffness should be considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.