Abstract

For wide class characterizations of volatile organic compounds (VOCs), conventional gas chromatography mass spectrometry (GC-MS)-based techniques are utilized. These GC-MS-based chemical identification approaches typically rely on library searches against ion fragmentation patterns of known compounds. Although MS library searches can often provide correct chemical identities, erroneous chemical assignments of structurally similar unknown compounds are also possible. Other detection systems, such as absorption spectrometers, have been used for VOC analysis and can provide complementary absorption data. Here, we demonstrate the analytical advantages of coupling vacuum ultraviolet (VUV) absorption spectroscopy and MS in tandem for the improved characterization of structurally similar VOCs. We also discuss technical considerations and limitations of coupling a VUV spectrometer to a quadrupole mass spectrometer. Moreover, we show that combining the isomer selectivity of VUV spectroscopy, as a nondestructive analyte detection approach, with the mass selectivity of MS in a VUV-MS detection system improves characterization of GC-eluting compounds. Utilizing GC/VUV-MS data, we demonstrate that orthogonal VUV and MS library searches improve identification of VOCs present in complex mixtures such as a mixed standard sample, a commercial perfume product, and an essential oil sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call