Abstract
This work presents a computational study of the atmospheric pressure plasma of the COST jet source in He + 0.1% N2 buffer gas, incorporating the treatment of the VUV resonant radiation from He atoms at a wavelength of 58.4 nm. The plasma is driven by single- and multi-frequency waveforms at various peak-to-peak voltages between 400 V and 685 V. The simulations, which include the photoemission of electrons from the electrodes as well as the photoionization of the N2 molecules indicate that these processes, induced by the VUV radiation, have relatively little influence on the discharge characteristics due to other more efficient charged particle production mechanisms, e.g., Penning ionization. While the plasma characteristics are computed along one spatial dimension perpendicular to the electrodes, the tracing of the VUV photons is executed in the real 3D geometry of the plasma source to allow the computation of the VUV photon flux leaving the device through the orifice. Photon fluxes up to cm−2 s−1, corresponding to an energy flux of ≈18 mW cm−2 are found at multi-frequency operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.