Abstract

The pulsed field ionization-photoelectron (PFI-PE) spectrum of allyl radical CH2CHCH2 (C3H5) in the energy range of 65 200-66 600 cm-1 has been measured using vacuum ultraviolet laser. Based on the simulation of the rotational structures resolved in the vibrational PFI-PE bands of C3H5+(X 1A1;0(0+) and nu7+=1), the ionization energies (IEs) of C3H5(X 2A2;0(0)) to form C3H5+(X 1A1;0(0+) and nu7+=1) are determined to be 65 584.6+/-2.0 cm-1 (8.131 46+/-0.000 25 eV) and 66 020.9+/-2.0 cm-1 (8.185 56+/-0.000 25 eV), respectively, where nu7+(a1) is the symmetric C-C-C bending mode of C3H5+(X 1A1). These values are compared to IE(C3H5) values obtained in previous experimental and high-level ab initio quantum theoretical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.