Abstract

In this article, the electron ionization temperature in plasmas generated by 1064 nm laser pulses in the vacuum ultraviolet spectral range is evaluated as a function of the axial distance from a steel target surface using emission spectroscopy. The temperature was determined using the relative line intensities ratio of C II 90.41 nm and C III 97.7 nm spectral lines, applied to the Saha–Boltzmann equation. Ionization temperatures determined in this way changed from 33 900 K at the target surface to 26 800 K (2.92–2.31 eV) at 4.0 mm away from it. Large differences between the measured excitation and ionization temperatures suggest nonthermal equilibrium conditions between electrons and heavier ionic species. Based upon the results obtained from this and a previous study under the same operating conditions, the validity of the local thermal equilibrium condition in the plasmas investigated is presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.