Abstract

The high-resolution absorption spectrum of 3-methoxyacrylonitrile (3MAN) was measured between 5.27 and 12.59 eV using a synchrotron-based Fourier-transform spectrometer. It was related to an absolute absorption cross-section scale. Complementary calculations at the DFT-MRCI/aug-cc-pVTZ level of theory document the vertical transition energies and oscillator strengths toward the first 19 states of both the E and Z geometrical isomers of 3MAN. Comparisons with the experimental absorption spectrum reveal the similarities and differences between 3MAN, a bifunctional molecule, with acrylonitrile and methylvinylether, where only one functional group is present. As in acrylonitrile, several broad valence transitions were observed up to the ionization limit. They are likely associated with the extended π-system induced by the nitrile group but might also involve σσ* transitions close to the ionization limit. As in methylvinylether, Rydberg series converging to the ionization limit are absent. This is attributed to a difference in neutral and cationic geometry due to a 60° rotation of the methyl group.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call