Abstract
Vacuum renormalization corrections are calculated for normal nuclear matter and neutron star matter in the chiral-sigma model. The theory is generalized to include hyperons in equilibrium with nucleons and leptons. The equations of state corresponding to two compression moduli, a “stiff” and “soft” one for nuclear matter, are studied. It is shown that fully one half the mass of a neutron star at the limiting mass is composed of matter at less than twice nuclear density. Neutron star masses are therefore moderately sensitive to the properties of matter near saturation and to the domain of the hyperons, but dominated by neither. The predictions for the two equations of state are compared with observed neutron star masses, and only the stiffer is compatible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.