Abstract
Within the relativistic mean field approximation, we analyse the kink effect (KE) in the evolution of the charge radius isotope shift of lead isotopes as a function of the neutron number N. We show that if the interactions between neutron and proton states responsible for the KE are assumed to be proportional either to the overlaps of their corresponding wave functions or to those of their corresponding probability density distributions, it is not possible, by themselves, to explain the KE. However, we find that the small component of the single-particle Dirac spinors plays a relevant role in the kink formation. By considering the contribution of the N−126 valence neutrons to the proton central potential, we can explain the generation of the KE and why neutrons in the 1i11/2 orbital are more kinky than when they are in the 2g9/2 orbital.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.