Abstract

Ultra-high vacuum measurement and extremely high vacuum (UHV/XHV) measurement play an important role in high-tech fields such as deep space exploration, particle accelerators, and nanoscience; with the continuous extension of the lower limit of measurement, especially when it reaches the order of 10<sup>–10</sup> Pa, higher requirements are placed on the accuracy of the measurement. At present, in the field of UHV/XHV measurement, ionization gauges based on the principle of neutral gas ionization are commonly applied to the vacuum measurement. However, traditional ionization vacuum gauges during use can create electronic excitation desorption effects, soft X-rays, and the effect of hot cathode outgassing, thereby affecting the accuracy of measurement and limiting the lower limit of measurement. Compared with the traditional measurement technology, this method uses the relationship between the loss rate and pressure caused by the collision of cold atoms trapped in the trap depth with the background gas to calculate the gas density and inversely calculate the vacuum pressure. Based on the intrinsic quantum mechanical properties of cold atom collisions, this method is expected to be developed into a new vacuum traceability standard. In this paper, based on the small-angle approximation and impulse approximation under the quantum scattering theory, the loss rate coefficient of the collision of <sup>6</sup>Li cold atoms with background gas molecules is calculated. According to the ideal gas equation, the pressure inversion formula is obtained. The collision loss rate is extracted by accurately fitting the loss curve of the cold atom. In order to improve the accuracy of vacuum inversion and reduce the influence of quantum diffractive collision on loss rate measurement, the trap depth under the conditions of a certain cooling laser intensity, detuning, and magnetic field gradient is determined by the photoassociation method. Finally, in a range of 1 × 10<sup>–8</sup>–5 × 10<sup>–6</sup> Pa, the inverted pressure value is compared with the measured value of the ionization meter, proving that this method has good accuracy and reliability in the inversion of vacuum pressure. At present, the main factor restricting the improvement of accuracy is the influence of the collision between the excited atoms in the magneto-optical trap and the background gas on the loss rate measurement. In the future, with the proportion of excited atoms and the excited state <i>C</i><sub>6</sub> coefficient to be precisely determined, the uncertainty of vacuum pressure measurement can be further reduced.

Highlights

  • 摘 要 2018 年第 26 届国际计量大会召开后,伴随着国际单位制的重新定义,真空 量值也加速了其量子化进程。其中冷原子的激光冷却和俘获技术的不断发展,为 超高/极高真空度的测量提供了新思路和新方案。在该方法中,真空度由囚禁在 势阱中的冷原子与背景气体碰撞的损失率及碰撞截面共同决定。基于原子碰撞的 基本特性,为真空量值提供了新的溯源途径。本文从磁光阱中冷原子真空测量的 基本原理出发,基于量子散射理论小角近似和冲激近似计算了 6Li 冷原子与背景 气体碰撞的损失率系数,并利用光缔合法测定了在一定磁场和光场条件下的磁光 阱阱深,基于两级磁光阱装置通过拟合冷原子数的衰减曲线精确提取出了碰撞损 失率。最后在 1×10-8 Pa-5×10-6 Pa 压强范围内将真空反演量值与电离计示数对比, 分析了制约测量精度提高的因素并提出了改进措施。 关键词:真空测量,冷原子,损失率系数,势阱深度 PACS: 06.20.-f, 37.10.Gh,34.50.Cx,42.62.-b

  • 图 4 在三种不同催化激光失谐量 Δ 下 K 随占空比 d 的变化及线性拟合 Fig.4 Variation of K with duty factor d and the corresponding linear fitting under three different detunings Δ of catalysis laser

  • 图 6 (a) 电离计测量的 H2 压力值 Pgauge 与冷原子反演真空度 Patom 对比图; (b) 电离计测量的 N2 压力值 Pgauge 与冷原子反演真空度 Patom 对比图; Fig.6 (a) Comparison of the H2 pressure measured by ionization gauge and by trapped cold atoms. (b) Comparison of the N2 pressure measured by ionization gauge and by trapped cold atoms

Read more

Summary

Introduction

摘 要 2018 年第 26 届国际计量大会召开后,伴随着国际单位制的重新定义,真空 量值也加速了其量子化进程。其中冷原子的激光冷却和俘获技术的不断发展,为 超高/极高真空度的测量提供了新思路和新方案。在该方法中,真空度由囚禁在 势阱中的冷原子与背景气体碰撞的损失率及碰撞截面共同决定。基于原子碰撞的 基本特性,为真空量值提供了新的溯源途径。本文从磁光阱中冷原子真空测量的 基本原理出发,基于量子散射理论小角近似和冲激近似计算了 6Li 冷原子与背景 气体碰撞的损失率系数,并利用光缔合法测定了在一定磁场和光场条件下的磁光 阱阱深,基于两级磁光阱装置通过拟合冷原子数的衰减曲线精确提取出了碰撞损 失率。最后在 1×10-8 Pa-5×10-6 Pa 压强范围内将真空反演量值与电离计示数对比, 分析了制约测量精度提高的因素并提出了改进措施。 关键词:真空测量,冷原子,损失率系数,势阱深度 PACS: 06.20.-f, 37.10.Gh,34.50.Cx,42.62.-b. 张苏钊 1) 孙雯君 1) 董猛 1) 武海斌 2) 李睿 2) 张雪姣 2) 张静怡 2) 成永军 1)† 式中, kloss = lossv 为冷原子热平均损失率系数,由碰撞损失截面 loss 和背 由于背景气体分子速度 vbg 呈热力学分布,故损失率系数可由 Maxwell-Boltzman 分布求积分得到: ( ) v loss bg

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call