Abstract

Abstract The longitudinal response function for quasielastic electron scattering from nuclear matter is calculated in a relativistic random phase approximation to the Walecka model including vacuum polarization effects. The Walecka model has nucleons interacting with isoscalar sigma and omega meson fields. The change in the vacuum polarization response of the Dirac sea because of the decrease in the relativistic effective mass of the nucleons leads to a thirty percent decrease in the energy integrated longitudinal response function (Coulomb sum rule). This change is isoscalar. Therefore, the transverse response, which is dominated by the isovector anomalous moment, is largely unchanged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.