Abstract
We give a mathematically rigorous construction of the moduli space and vacuum geometry of a class of quantum field theories which are N=2 supersymmetric Wess-Zumino models on a cylinder. These theories have been proven to exist in the sense of constructive quantum field theory, and they also satisfy the assumptions used by Vafa and Cecotti in their study of the geometry of ground states. Since its inception, the Vafa-Cecotti theory of topological-antitopological fusion, or tt* geometry, has proven to be a powerful tool for calculations of exact quantum string amplitudes. However, tt* geometry postulates the existence of certain vector bundles and holomorphic sections built from the ground states. Our purpose in the present article is to give a mathematical proof that this postulate is valid within the context of the two-dimensional N=2 supersymmetric Wess-Zumino models. We also give a simpler proof in the case of holomorphic quantum mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.