Abstract

The vacuum fluctuation (VF) effects on the properties of the hyperonic neutron star matter are investigated in the framework of the relativistic mean field (RMF) theory. The VF corrections result in the density dependence of in-medium baryon and meson masses. We compare our results obtained by adopting three kinds of meson-hyperon couplings. The introduction of both hyperons and VF corrections softens the equation of state (EoS) for the hyperonic neutron star matter and hence reduces hyperonic neutron star masses. The presence of the δ field enlarges the masses and radii of hyperonic neutron stars. Taking into account the uncertainty of meson-hyperon couplings, the obtained maximum masses of hyperonic neutron stars are in the range of 1.33M⊙–1.55M⊙.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.