Abstract

The mechanism of vacuum discharge of a multitip field cathode based on carbon nanotubes has been studied. The analysis was carried out using a multichannel field emission information collection system, a computerized field projector, and a program for recording and cyclic playback of the experimental results. The discharge under study occurred in the regime of a relatively stable emission current without an increase in the external voltage level. The time dependences of the local currents of all individual emission sites registered on the cathode surface were obtained. It is shown that the discharge consists of several successive phases, the key of which are an explosion in the region of one of the most active carbon nanotubes and a plasma torch above it. The effect of the discharge on neighboring nanotubes, which is associated with both the destruction of emission sites and their appearance, is also described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call