Abstract

The objective of this work is to reveal the effects of an axial magnetic field (AMF) on the vacuum arc characteristics between transverse magnetic field (TMF) contacts. These vacuum arc characteristics include the vacuum arcing behavior and the arc voltage waveform. In the experiments, an external AMF was applied to a pair of TMF contacts. The external AMF flux density BAMF can be adjusted from 0 to 110 mT. The arc current in the tests varied over a range from 0 to 20 kA rms at 45 Hz. The contact material was CuCr25 (25% Cr). A high-speed charge-coupled device video camera was used to record the vacuum arc evolution. The experimental results show that the application of the AMF effectively reduces the TMF arc voltage noise component and reduces the formation of liquid metal drops between the contacts. The diffuse arc duration increases linearly with increasing AMF flux density, but it also decreases linearly with increasing arc current under application of the external AMF. The results also indicate that the diffuse arc duration before the current zero is usually more than 1 ms under the condition that the value of the AMF per kiloampere is more than 2.0 mT/kA. Finally, under application of the AMF, the arc column of the TMF contacts may constrict and remain in the center region without transverse rotation. Therefore, the combined TMF–AMF contacts should be designed such that they guarantee that the AMF is not so strong as to oppose transverse rotation of the arc column.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call