Abstract

Utilizing Pro-cast software, the whole vacuum arc remelting process of high-alloy bearing steel ingot (the diameter was 160 mm and the high was 600 mm) was simulated. And moving face quality and moving boundary conditions were added to the simulation. Purposes of the simulation were to explore the influence of smelting powers on the temperature field, pool shape and solidification microstructure in vacuum arc remelting process. The depth of molten bath gradually increased and stabilized finally and the pool shape transferred from flat to funnel. When smelting power increased, the depth of molten pool became deeper and the width of mushy zone slightly reduced; the size of primary dendrite and secondary dendrite spacing increased significantly; the percentage and size of columnar crystals also increased. A reasonable power-time cure was given to guide industrial melting after simulation, the size of molten pool morphology and microstructure were controlled in an ideal range under the reasonable cure. The simulated grain morphology agreed well with the experimental pickling result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call