Abstract

Atomic and electronic structures of monovacancy (V1), divacancy (V2) and ring hexavacancy (V6) in crystalline silicon are studied using first-principles calculations in periodic supercells. Our results show that the V6 defect is the most stable among V1, V2 and V6 defects, and the V2-RB structure is a little more stable than the V2-LP structure due to lower vacancy formation energy. Furthermore, it is found that both V1 and V2 undergo the Jahn–Teller (JT) distortion while V6 does not. As a result, V1 and V2 have deep levels in the gap which mainly come from the neighboring atoms to vacancy. V6 has tailing bands in the gap, and so has a more stable electronic structure than V1 and V2. In addition, the JT distortion also reflects in the band decomposed charge density and the difference charge density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call