Abstract

The effect of intrinsic point defects on the electronic structure and absorption spectra of ZnO was investigated by first-principle calculation. Among the intrinsic point defects in ZnO, oxygen vacancies [Formula: see text] and interstitial zinc [Formula: see text] have the lower formation energy and the more stable structure under zinc(Zn)-rich condition, whereas zinc vacancies [Formula: see text] and interstitial oxygen [Formula: see text] have the lower formation energy and the more stable structure under oxygen(O)-rich condition. The band gap of [Formula: see text] becomes narrow and the absorption spectrum has a redshift. In the visible region, the photo-excited electron transition of [Formula: see text] is graded from the valence band top to the impurity level and then to the conduction band bottom, showing the redshift of absorption spectrum of [Formula: see text] and explaining the reason of [Formula: see text] forming a deep impurity levels in ZnO. Moreover, the impurity energy level of [Formula: see text] coincides with the Fermi level, indicating the significant trap effect and the slow recombination of electrons and holes, which are conducive to the design and preparation of novel ZnO photocatalysts. The band gap of [Formula: see text] and [Formula: see text] broadened and the absorption spectrum showed blueshift, explaining the different values of the ZnO band gap width.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.