Abstract

The formation of prismatic dislocation loops is an important factor leading to radiation damage of metals. However, the formation mechanism and the size of the smallest stable loop has remained unclear. In this Rapid Communication, we use electronic structure calculations with millions of atoms to address this problem in aluminum. Our results show that there is a cascade of larger and larger vacancy clusters with smaller and smaller energy. Further, the results show that a seven vacancy cluster on the (111) plane can collapse into a stable prismatic loop. This supports the long-standing hypothesis that vacancy clustering leads to a prismatic loop, and that these loops can be stable at extremely small sizes. Finally our results show that it is important to conduct calculations using realistic concentrations (computational cell size) to obtain physically meaningful results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call