Abstract

To understand the dislocation mechanism during nanoindentation on metallic materials, molecular dynamics has been widely used. It has been found that isolated prismatic dislocation loop can be formed beneath the indenter among many materials. However, there is still argument on its formation mechanism. Herein, molecular dynamics simulation has been carried on Al (1 0 0) to understand the formation mechanism of prismatic dislocation loop during nanoindentation by a rigid hemispherical diamond indenter. Based on the force-displacement curve, the generation and evolution of the crystal defects are analyzed. A new three-step mechanism for the formation of prismatic dislocation loop is proposed, and it includes three steps: (1) reactions happen between Shockley partial dislocations, and then a stair-rod forms; (2) the resultant stair-rod reacts with a Shockley partial dislocation, and then a new Shockley partial dislocation forms; (3) annihilation occurs between Shockley partial dislocations and finally a prismatic loop is released. In addition, the motion of the prismatic dislocation loop can be influenced greatly by holding the indenter at the maximum indentation depth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.