Abstract

The v-shaped pits (so-called V-pits) observed in hydride-vapor-phase-epitaxy-grown GaN and associated with the columnar inversion domains originating from foreign particles were investigated. The inversion domains on the front and back surfaces of the test sample were recognized after chemical mechanical polishing. It was found that the V-pits originate from the columnar inversion domains. The inversion domains, in turn, arise from the particles that exist on a low-temperature GaN buffer layer on sapphire substrate. Using transmission electron microscopy, these particles were found to be of α-Si3N4 and graphitic carbon. Such particles are attributable to the components of the reactor and adhere to the low-temperature GaN buffer layer, which has a surface roughness of the order of several nanometers. Thus, an effective way of obtaining HVPE-grown thick GaN layers without the V-pits associated with columnar IDs is to maintain the parts of the HVPE chamber properly to prevent foreign particles from being generated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.