Abstract
In the context of carbon capture and storage (CCS), micro- and mesoporous polymers have received significant attention due to their ability to selectively adsorb and separate CO2 from gas streams. The performance of such materials is critically dependent on the isosteric heat of adsorption (Qst) of CO2 directly related to the interaction strength between CO2 and the adsorbent. Here, we show using the microporous polymer PIM-1 as a model system that its Qst can be conveniently determined by in situ UV-vis optical transmission spectroscopy directly applied on the adsorbent or, with higher resolution, by indirect nanoplasmonic sensing based on localized surface plasmon resonance in metal nanoparticles. Taken all together, this study provides a general blueprint for efficient optical screening of micro- and mesoporous polymeric materials for CCS in terms of their CO2 adsorption energetics and kinetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.