Abstract

ZnO–reduced graphene oxide (RGO) composites are successfully synthesized via UV-assisted photocatalytic reduction of graphite oxide by ZnO nanoparticles in ethanol. Their morphology, structure and photocatalytic performance in reduction of Cr(VI) are characterized by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray diffraction spectroscopy, UV–vis absorption spectrophotometer, respectively. The results show that in the composites the RGO nanosheets are decorated densely by ZnO nanoparticles, which displays a good combination between RGO and ZnO. ZnO–RGO composites exhibit an enhanced photocatalytic performance in reduction of Cr(VI) with a maximum removal rate of 96% under UV light irradiation as compared with pure ZnO (67%) due to the increased light absorption intensity and range as well as the reduction of electron–hole pair recombination in ZnO with the introduction of RGO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.