Abstract

ZnO–graphene composites are successfully synthesized via microwave-assisted reaction of zinc sulfate in aqueous solution with a graphite oxide dispersion using a microwave synthesis system. Their morphology, structure and photocatalytic performance in reduction of Cr(VI) are characterized by scanning electron microscopy, X-ray diffraction spectroscopy and UV-vis absorption spectrophotometer, respectively. The results show that in the composite the graphene nanosheets are decorated densely by ZnO nanosheets, which display a good combination between graphene and ZnO nanosheets. The ZnO–graphene composite exhibits an enhanced photocatalytic performance in the reduction of Cr(VI) with a removal rate of 98% under UV light irradiation as compared with pure ZnO (58%) due to the increased light absorption intensity and range, as well as the reduction of electron–hole pair recombination with the introduction of graphene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call