Abstract

Metal/semiconductor nanocomposite systems with the ability of controllable holographic storage are fascinating for advancing information technology. Ag/TiO2 nanocomposite films present multicolor photochromism, which plays a key role in high-density optical memory. However, the film undergoes a reversible photo-redox reaction by the alternating action of visible and UV lights, which weakens the optical stability of stored information. To date, no effective method has been proposed to hinder the UV-erasure in the film. In this paper, the transferring behavior of electrons in a Schottky junction between Ag and TiO2 is inhibited effectively by introducing electron acceptors into the photochromic film. Plasmonic photo-dissolution is enhanced greatly, which is in accordance with the theoretical fitting based on the reversible photo-chemical reaction. Holograms can be written efficiently with high stability even under the destructive UV-irradiation, which are expected to be applied in an environmentally-stable photo-device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.