Abstract

The first ππ* transition for protonated 2-, 3-, and 4-formylpyridine (FPH+) (m/z 108) is investigated by mass spectrometry coupled with photodissociation action spectroscopy at room temperature and 10K. The photoproduct ions are detected over 35000-43000cm-1, and the major product channel for 3-FPH+ and 4-FPH+ is the loss of CO forming protonated pyridine at m/z 80. For 2-FPH+, the CO loss product is present but a more abundant photoproduct arises from the loss of CH2O to form m/z 78. Plausible potential energy pathways that lead to dissociation are mapped out and comparisons are made to products arising from collision-induced dissociation. Although, in all cases, the elimination of CO is the overwhelming thermodynamically preferred pathway, the protonated 2-FPH+ results suggest that the CH2O product is kinetically driven and competitive with CO loss. In addition, for each isomer, radical photoproduct ions are detected at lower abundances. SCS-CC2/aug-cc-pVTZ Franck-Condon simulations assist with the assignment of vibrionic structure and adiabatic energies (0-0) for 2-FPH+ at 36 560cm-1, 37 430cm-1 for 3-FPH+, and 36 140cm-1 for 4-FPH+, yielding an accurate prediction, on average, within 620cm-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.