Abstract
Laboratory simulations of Martian conditions are essential to develop quantitative models for the survival of organic biomarkers for future Mars exploration missions.In this work, we report the results of ultraviolet (UV) irradiation processing of biomarkers adsorbed on minerals under Martian-like conditions. Specifically, we prepared Mars soil analogues by doping forsterite, lizardite, antigorite, labradorite, natrolite, apatite and hematite minerals with organic compounds considered as potential biomarkers of extant terrestrial life such as the nucleotides adenosine monophosphate (AMP) and uridine monophosphate (UMP). We characterized such Mars soil analogues by means of Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and Confocal Raman Imaging Spectroscopy (CRIS), in order to get insights into the specific molecule-mineral interactions and explore the capabilities of different techniques to reveal diagnostic features of these biomarkers. Then, we performed irradiation experiments in the mid-UV spectral region under simulated Martian conditions and under terrestrial ambient conditions for comparison, monitoring the degradation process through DRIFTS.We observed that degradation under Martian-like conditions occurs much slower than in terrestrial ambient conditions. The minerals labradorite and natrolite mainly promote photodegradation of nucleotides, hematite and forsterite exhibit an intermediate degrading effect, while apatite, lizardite and antigorite do not show any significant catalytic effect on the degradation of the target organic species.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have