Abstract

The goal of this paper is to investigate the final stage of the black-hole-evaporation process in the framework of Lorentz-violating modified dispersion relations (MDRs). As a consequence of MDRs, the high energy sector of the underlying field theory does not decouple from the low energy sector — a phenomenon known as UV/IR mixing. In the absence of exact supersymmetry, we derive an MDR which shows UV/IR mixing by a novel energy dependence. Then we investigate the effects of this type of MDRs on the thermodynamics of a radiating noncommutative Schwarzschild black hole. The final stage of black hole evaporation obtained in this framework is compared with existing pictures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.