Abstract

Banerjee-Ghosh's work shows that the singularity problem can be naturally avoided by the fact that black hole evaporation stops when the remnant mass is greater than the critical mass when including the generalized uncertainty principle (GUP) effects with first- and second-order corrections. In this paper, we first follow their steps to reexamine Banerjee-Ghosh's work, but we find an interesting result: the remnant mass is always equal to the critical mass at the final stage of black hole evaporation with the inclusion of the GUP effects. Then, we use Hossenfelder's GUP, i.e., another GUP model with higher-order corrections, to restudy the final evolution behavior of the black hole evaporation, and we confirm the intrinsic self-consistency between the black hole remnant and critical masses once more. In both cases, we also find that the thermodynamic quantities are not singular at the final stage of black hole evaporation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.