Abstract
The global LED (light emitting diode) market reached 5 billion dollors in 2008 and will be driven towards 9 billion dollors by 2011 [1]. The current applications are dominated by portable device backlighting, e.g. cell phones, PDAs, GPS, laptop etc. In order to open the general lighting market doors the luminous efficiency needs to be improved significantly. Photonic crystal (PhC) structures in LEDs have been demonstrated to enhance light extraction efficiency on the wafer level by researchers [2]. However, there is still a great challenge to fabricate PhC structures on LED wafers cost-effectively. Nanoimprint lithography (NIL) [3] has attracted considerable attentions in this field due to its high resolution, high throughput and low cost of ownership (CoO). However, the current NIL techniques with rigid stamps rely strongly on the substrate flatness and the production atmosphere. Those factors hinder the integration of NIL into high volume production lines. UV-NIL with flexible stamps [4], e.g. PDMS stamps, allows the large-area imprint in a single step and is less-sensitive to the production atmosphere. However, the resolution is normally limited due to stamp distortion caused by imprint pressure. A novel NIL technique developed by Philips Research and Süss MicroTec, substrate conformal imprint lithography (SCIL), bridges the gap between UV-NIL with rigid stamp for best resolution and soft stamp for large-area patterning. Based on a cost-effective upgrade on Süss mask aligner, the capability can be enhanced to nanoimprint with resolution of down to sub-10 nm on an up to 6 inch area without affecting the established conventional optical lithographic processes on the machine. Benefit from the exposure unit on the mask aligners, the SCIL process is now extended with UV-curing option, which can help to improve the throughput dramatically. In this paper, the fabrication of photonic crystal structures with SCIL technique on Süss MA6 mask aligner is demonstrated. In addition, the industrialization considerations of UV-SCIL process in high volume manufacturing are briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.