Abstract
Incomplete oxidation of organic micropollutants may result in diverse intermittent oxidation byproducts, significantly affecting disinfection byproducts (DBPs) formation of the original solutions following chlorination. This study investigated DBPs formation from diazinon in solution due to the formation of intermittent oxidation byproducts by UV and UV/H2O2 pre-oxidation. Monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), chloroform (TCM), dichloroacetonitrile (DCAN) and 1,1,1-trichloroacetone (1,1,1-TCP) were detected for chlorinated diazinon solutions that have been treated by UV and UV/H2O2 oxidation. The DBPs formation was found increased significantly in the treated diazinon solutions with UV dose. Solution pH and H2O2 dose also exhibited distinct influences on the DBPs formation depending on the individual DBP species. Speciation and molecular structures of the oxidation byproducts were analyzed via MS and MS/MS spectra. Four main UV oxidation byproducts, (2-isopropyl-6-methyl-4-pyrimidinol (IMP), O-analog diazinon (diazoxon), diethyl thiophosphate (DETP) and diethyl phosphate (DEP)), were also examined individually to identify their relative contributions to DBPs formation. The increase in total DBPs formation of the treated diazinon solutions was found to be attributable mainly to its oxidation product IMP and its secondary oxidation products, while the other two fragments DETP and DEP had little effect. Moreover, its oxidation fragment diazoxon intensified the formation of MCAA, DCAA and TCAA under UV/H2O2 pre-oxidation condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.