Abstract

In this work, the photostimulated processes of O2 and NO2 molecules with the surface of ZnO under UV radiation were studied by in situ mass spectrometry in the temperature range of 30–100 ∘C. Nanocrystalline needle-like ZnO was synthesized by decomposition of basic zinc carbonate at 300 ∘C, and the surface concentration of oxygen vacancies in it were controlled by reductive post-annealing in an inert gas at 170 ∘C. The synthesized materials were characterized by XRD, SEM, low-temperature nitrogen adsorption (BET), XPS, Raman spectroscopy, and PL spectroscopy. Irradiation of samples with UV light causes the photoabsorption of both O2 and NO2. The photoadsorption properties of ZnO are compared with its defective structure and gas-sensitive properties to NO2. A model of the sensor response of ZnO to NO2 under UV photoactivation is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call