Abstract

We report on a theoretical study of adsorptions of CO2, NO2 and SO2 molecules on ZnO(0002) surfaces using density functional theory-based (DFT-based) calculations. These adsorptions are done on perfect and defective ZnO(0002) surfaces. We find that all of these molecules are chemically adsorbed on the perfect ZnO(0002) surface. In the presence of Zn vacancy, we find that the surface is only active toward SO2 molecule. On the hydroxylated ZnO(0002) surfaces, CO2 and SO2 molecules can react with the preadsorbed OH molecule to form various adsorbates such as: carboxyl (COOH), bicarbonate (CO3H), sulfonyl hydroxide (SO3H), SO3 and water. However, NO2 molecule cannot react with the pre-adsorbed OH molecule and only physically adsorbed on the surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call