Abstract

Image fusion is a classical problem in the field of image processing whose solutions are usually not unique. The common image fusion methods can only generate a fixed fusion result based on the source image pairs. They tend to be applicable only to a specific task and have high computational costs. Hence, in this paper, a two-stage unsupervised universal image fusion with generative diffusion model is proposed, termed as UUD-Fusion. For the first stage, a strategy based on the initial fusion results is devised to offload the computational effort. For the second stage, two novel sampling algorithms based on generative diffusion model are designed. The fusion sequence generation algorithm (FSGA) searches for a series of solutions in the solution space by iterative sampling. The fusion image enhancement algorithm (FIEA) greatly improves the quality of the fused images. Qualitative and quantitative evaluations of multiple datasets with different modalities demonstrate the great versatility and effectiveness of UUD-Fusion. It is capable of solving different fusion problems, including multi-focus image fusion task, multi-exposure image fusion task, infrared and visible fusion task, and medical image fusion task. The proposed approach is superior to current state-of-the-art methods. Our code is publicly available at https://github.com/xiangxiang-wang/UUD-Fusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.