Abstract

This study generates intensity-duration-frequency curves for three important cities in Iraq using Global Precipitation Measurement Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG), Global Satellite Mapping of Precipitation near real-time (GSMaP NRT), and gauge corrected (GSMaP GC) satellite precipitation datasets. Many probability distribution functions were used to fit the maximum yearly rainfall data. The Sherman equation was used to create intensity-duration-frequency (IDF) curves for rainfall intensities with 2-, 5-, 10-, 25-, 50-, and 100-year return periods, with the estimated coefficients of the best-fit distribution serving as the fitting parameters. The discrepancy between the IDF curves produced from the satellites and the observed data was used to bias correct the satellite IDF curves. The Generalized Extreme Value Distribution model best describes the hourly rainfall distribution of satellite data. GSMaP GC was the best option for creating IDF curves with higher correlations with observed data at Baghdad, Basra, and Mosul. The study indicates the necessity of gauge correction of satellite rainfall data to reduce under- and over-estimating observed rainfall. GSMaP GC can reasonably estimate rainfall in a predominantly arid climate region like Iraq. The generated IDF curves may be an important step toward achieving sustainable urban stormwater management in the country.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call