Abstract

Traditional graphite anodes have a specific capacity of approximately 372 mAh/g, whereas silicon presents a promising alternative with theoretical capacities reaching up to 4200 mAh/g. However, substantial volumetric changes in silicon during lithiation lead to rapid degradation of capacitance. This study explores the utilization of rice husk, an abundant agricultural waste, as a raw material for Si/C composites. Rice husk inherently contains significant amounts of silicon and carbon, rendering it a sustainable and economical source. The activated carbon was derived from rice husk by carbonization and thermochemically activation with activation temperature of 850 °C and KOH agent. The silicon dioxide was derived from rice husk by subjecting to annealing in a muffle furnace at 650 °C for 4 h following NaOH and HCl solution treatment. The silicon was derived from silicon dioxide by thermomagnesium treatment in a tube furnace at 700 °C for 120 min. SEM, elemental analysis, XRD, Raman, and FT-IR were used to characterize the materials to evaluate their morphological and structural composition. Electrochemical performance evaluation demonstrated improved energy capacity and stability, highlighting rice husk-derived Si/C composites as a viable solution for advancing lithium-ion battery performance. This innovative approach not only lowers production costs but also supports sustainable development by effectively utilizing agricultural waste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.