Abstract
HypothesisThe widespread resistance of bacteria to traditional antibiotic treatments has expedited the search for novel therapies against these pathogens. The hypothesis of this work is that two distinctively different polymeric delivery systems, specifically D-α-tocopherol polyethylene glycol 1000 succinate (TPGS)-poly(lactic-co-glycolic acid) (PLGA) nanoparticles and octenyl succinic anhydride-modified low molecular weight hyaluronic acid (OSA-HA) nanogels may be used to substantially improve the properties of azithromycin, allowing its use for effective treatment of Pseudomonas aeruginosa biofilm infections. ExperimentsAzithromycin was encapsulated in both delivery systems and the physicochemical properties of the loaded delivery systems, including size, surface charge and drug loading were evaluated. Additionally, particle interaction with a mucin layer, penetration into a bacterial biofilm, prevention of biofilm formation and eradication of pre-formed biofilms, the influence on production of virulence factors and bacterial motility as well as cytotoxicity towards hepatocytes and lung epithelial cells were compared head-to-head. FindingsThe TPGS-PLGA nanoparticles noticeably improved the antimicrobial activity and the biofilm prevention activity of azithromycin whereas the OSA-HA nanogels showed reduced mucin interactions together with improved reduction of pre-formed biofilms and maintained the low eukaryotic cell cytotoxicity of azithromycin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.