Abstract

This study aims to demonstrate the effectiveness of using biological oxidation for hydrogen sulfide (H2S) control. A long-term experiment was conducted using a rod-shaped electrode made of highly conductive concrete, which provided an electron pathway for H2S mitigation. Bacterial flora analysis was conducted using PCR-DGGE and metagenomic analysis by next-generation sequencing to identify electricity-producing bacteria. Results showed that H2S was effectively mitigated, and electricity-producing bacteria, including Geobacter sp. and Pelobacter sp., were found around the inner surface of the anode. The study found that highly conductive concrete can create an electron pathway for biological oxidation of H2S. Oxygen from the air layer near the surface of the water can act as an electron acceptor, even under anaerobic conditions, enabling effective H2S control in sewer systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.