Abstract

Due to its worldwide coverage and high revisit time, satellite-based remote sensing provides the ability to monitor in-season crop state variables and yields globally. In this study, we presented a novel approach to training agronomic satellite retrieval algorithms by utilizing collocated crop growth model simulations and solar-reflective satellite measurements. Specifically, we showed that bidirectional long short-term memory networks (BLSTMs) can be trained to predict the in-season state variables and yields of Agricultural Production Systems sIMulator (APSIM) maize crop growth model simulations from collocated Moderate Resolution Imaging Spectroradiometer (MODIS) 500-m satellite measurements over the United States Corn Belt at a regional scale. We evaluated the performance of the BLSTMs through both k-fold cross validation and comparison to regional scale ground-truth yields and phenology. Using k-fold cross validation, we showed that three distinct in-season maize state variables (leaf area index, aboveground biomass, and specific leaf area) can be retrieved with cross-validated R2 values ranging from 0.4 to 0.8 for significant portions of the season. Several other plant, soil, and phenological in-season state variables were also evaluated in the study for their retrievability via k-fold cross validation. In addition, by comparing to survey-based United State Department of Agriculture (USDA) ground truth data, we showed that the BLSTMs are able to predict actual county-level yields with R2 values between 0.45 and 0.6 and actual state-level phenological dates (emergence, silking, and maturity) with R2 values between 0.75 and 0.85. We believe that a potential application of this methodology is to develop satellite products to monitor in-season field-scale crop growth on a global scale by reproducing the methodology with field-scale crop growth model simulations (utilizing farmer-recorded field-scale agromanagement data) and collocated high-resolution satellite data (fused with moderate-resolution satellite data).

Highlights

  • We present the results for the bidirectional long short-term memory networks (BLSTMs) trained to predict the Agricultural Production Systems sIMulator (APSIM)-simulated agronomic variables

  • We first present the results from the BLSTMs that predict the APSIM-simulated yields, as these can be directly compared to the ground-truth county-level United State Department of Agriculture (USDA) NASS survey yields

  • The BLSTM trained on the clusterless calibration data over the entire US Corn Belt can predict the APSIM-simulated yields with a cross validated (CV) R2 value of 0.68, while the NASS ground-truth yields are predicted with an R2 value of 0.48

Read more

Summary

Introduction

In [16], two unknown G × E × M factors (the planting date and planting density) and three crop growth model coefficients (the biomass to energy ratio, the harvest index, and the potential heat units) are calibrated based only on goodness-of-fit criteria with United State Department of Agriculture National Agricultural Statistics Service (USDA-NASS) county-level maize yields. Even this calibration with regional crop yields is not always performed [10], likely because the stresses imposed on crop growth, especially in developing regions, are highly variable and dependent on unknown field-scale management decisions. Gridded crop models perform significantly worse in developing regions [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call