Abstract

Expansive soils, also known as swell-shrink soils, are one of the most problematic soils in highway construction and exhibit significant volume changes by swelling and shrinking while wet and dry, respectively. These changes in soil cause cracks, heaves, differential settlements, and damages to the overlying pavements leading to high maintenance costs. The annual average maintenance cost of structures built on expansive soils ranges from $9 to $15 billion, with 50% of the expenses associated with highways and streets. Chemical stabilization techniques such as cement and lime stabilization are one of the most efficient ways to treat expansive soils. However, there is a need to develop environmentally friendly approaches to stabilize expansive soils due to worldwide growing interest in sustainable developments and concerns about greenhouse gas emissions and climate change. In this context, using waste materials in soil stabilization has been considered an important issue for sustainability concerns. The aim of the current study is to review the relevant studies performed to improve the geotechnical and engineering properties of expansive subgrade soils of pavements by using waste materials arising from industrial, agricultural, and other activities in the last decade. In the organization of this study, characteristics of expansive soils including plasticity, compaction, strength & stiffness, microstructural characteristics, shrink-swell properties, and durability were focused to point out the effect of the waste materials. The overall results obtained throughout the scope of the current study indicated that the use of waste materials in soil stabilization improves the engineering properties of expansive soils, significantly. This paper also provides key information and creates awareness for researchers and sector representatives about sustainable soil stabilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.